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THEORETICAL CHARACTERISTICS IN SUPERSONIC FLOW OF 

CONSTANT-CHORD PARTIAL-SPAN CONTROL 

SURFACES ON RECTANGULAR WINGS 

HAVING FINITE THICKNESS 

By Warren A. Tucker and Robert L. Nelson 

SUMMARY 

The Busemann third-order approximation for two-dimensional isentropic 
flow was used in suitable conjunction with three-dimensional solutions 
found by the linearized theory to determine analytically, for small angles 
of attack and control deflections, the control—surface characteristics of 
partial-span constant-chord flaps on rectangular wings having finite 
thickness. 

The control surfaces were considered to extend either outboard from 
the center line or inboard from the wing tip. Although only flat-sided 
control surfaces were treated, the general method can be extended to 
control surfaces having curved sides. 

Equations were found for the lift coefficient, rolling-moment coef- 
ficient, and hinge-moment coefficient due to control deflection, and for 
the pitching-moment coefficient due to flap lift. The effect of thickness 
was shown to be given by a single factor. 

INTRODUCTION 

Much work has been done on three-dimensional control-surface char- 
acteristics by using the linearized equations of supersonic flow. 
(See references 1 to k.)    In reference 5, two-dimensional control- 
surface characteristics were found by the use of more exact methods. 
Although references 1 to k  characteristically show no effect of airfoil 
thickness, reference 5 shows that the effect of thickness influenced 
the control—surface characteristics when higher-order terms were taken 
into account. In the present paper, the Busemann third-order approxi- 
mation for two-dimensional isentropic flow is used together with three- 
dimensional solutions found by use of the linearized theory to determine 
the characteristics of partial-span, constant-chord control surfaces on 
rectangular wings having finite thickness. The method used to combine 
the two types of solutions consists of multiplying the pressures found 
from the linearized theory by a factor such that in a region of two- 
dimensional flow the pressure is made equal to that found from the 
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Busemann third—order approximation. Simple expressions are found for the 
lift coefficient, rolling-moment coefficient, and hinge-moment coefficient 
due to control deflection and for the pitching-moment coefficient due to 
flap lift. 

The results are subject to all the limitations of the third-order 
approximation. - Some discussion of these limitations is given in refer- 
ence 6. Additional errors are introduced hy the combination of two theories 
having different 'degrees of approximation. Boundary-layer effects have 
been neglected. 

SYMBOLS 

A . wing aspect ratio 0^\ 

h wing span 

"bf. flap span 

c wing chord 

c wing mean aerodynamic chord (c) 

c.p flap chord 

of flap root-mean—square chord     (c^) 

C- 

fr£~- 1 ß 

„    _  (7 + 1)M^ - 1^(M
2
 - l) 

^o   =   —  

c3S 

2(M
2
 - i)2 

(7 + l)!!8 +   (2y2 - 7y - 5)^ + 10(7 + l)M^ - 12M2 + 8 
6(M2 - 1)7/2 

CL lift coefficient    ( L 
qß 

Cm pitching-moment coefficient    [  
IqSc 
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C7     rolling-moment coefficient f-^-A 1 UsW 
Ch    hinge-moment coefficient 

Cp lifting-pressure coefficient ( - ) 

H hinge moment of one flap 

H-]_ hinge moment over inboard corner of one flap 

H2 hinge moment over two-dimensional part of one flap 

H3 hinge moment over outboard corner of one flap 

L lift of two flaps 

I rolling moment of two flaps 

free-stream Mach number; pitching moment of two flaps about 
midchord of wing 

P lifting pressure ' - 

p local static pressure 

P0 free—stream static pressure 

q. free—stream dynamic pressure  (-2—-) 

S wing area (be) 

Y free—stream velocity 

x,y Cartesian coordinates parallel and normal, respectively, to 
free—stream direction 

ß = \/M2T 

7     ratio of specific heat at constant pressure to specific heat at 
constant volume (lAO for air) 

5      angle of flap deflection 



NACA TN No. 1708 

0     angle of surface with respect to free stream, positive when 
direction of flow is toward surface 

V = ßZ 
x 

p     free—stream density 

0     trailing-edge angle 

Subscripts: 

5     partial derivative of coefficient with respect to 6, taken 

at 8 = 0 (example: CT^ = ( —- J 
\ 5  \ö8 /B=0 

CL     partial derivative of coefficient with respect to CL, taken 
at 5 = 0 

00 two-dimensional 

u upper surface 

1 lower surface 

av average value 

All angles are in radians, unless otherwise specified. 

ANALYSIS 

The control-surface configurations investigated are shown in figure 1. 
The only limitations on the airfoil section are that the flap must have 
flat sides, the section must he symmetrical about the chord line, and the 
leading-edge angle must he small enough so that the shock wave is attached. 
Because the pressures over certain parts of the inboard and outboard flaps 
are identical, both cases are treated in this paper. 

The angle of attack and the control deflection are assumed to be 
small, and the chordwise gaps between the wing and the flap are assumed 
to be sealed. The additional assumption is made that the effects of 
angle of attack and control deflection are mutually independent and can 
be superposed. Although this assumption is not strictly true, it is a 
good engineering approximation for the small angles considered. 

The control-surface characteristics to be found are as follows: 

CL~  lift coefficient due to flap deflection 
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Cz&  rolling-moment coefficient due to flap deflection 

ch$  hingeHmoment coefficient due to flap deflection 

Cine  Pitching-moment coefficient (about the midchord) due to flap 
h lift 

The only information required to find these coefficients is the 
pressure distribution due to flap deflection, which, -within the limita- 
tions of the present analysis, is independent of the airfoil section so 
long as the flap is flat sided. To find the hinge-moment coefficient 
due to angle of attack would require a knowledge of the pressure 
distribution due to angle of attack, which would be a function of the 
airfoil section. Even for a particular airfoil section, this pressure 
distribution cannot be found to the same degree of approximation as the 
pressure distribution due to flap deflection by using the assumptions of 
the present analysis. In order to preserve the generality of the 
analysis, the equations for this coefficient, therefore, have not been 
derived. 

Pressure distributions.- The aforementioned coefficients are easily 

determined if the pressure distribution due to flap deflection is known. 
In the region between the Mach cones from the corners of the flap, the 
flow is two-dimensional. Then, according to the Busemann third-order 
approximation to isentropic flow, 

P ~ Po 0     o 
 = c^e + c2ed + c^ei 

If the angles are considered positive for compression and negative for 
expansion, then from figure 1(c) 

t 
2 

el = (8 

0U = -Is + 

Then, 

Pi " Po Cl (S -|)+ o2(a- - 0S + f)+ c3(S3 _ 3^+ |0% _|! 

Pu - Po 
— = - ^(5 + |) + 0,(52 + jfc + £) - ^3 + I pb2 



NACA TN Wo. 1708 

The net lifting-pressure coefficient is then 

CP = f = -^-q-2 - JLq-£ = 2C15 " 2C250 + 2C353 + \ C30 
5 

= 25^ - C20 + I C30
2) + 2C,53 

Within the Mach cones from the corners of the flaps, the pressure varia- 
tions have been previously determined by use of the linear theory (refer- 
ences k  and 7). In the present analysis the shapes of the pressure 
distribution inside the tip Mach cones are assumed to be identical to 
those found by use of the linear theory, but the ordinates are multiplied 
by a constant factor such that the value of the pressure at the inner 
limit of the Mach cone equals the two—dimensional pressure found by use of 
the third—order approximation. The pressure distributions over both 
inboard and outboard flaps are shown in figure 2, together with the equa- 
tions for the pressure variation. 

Derivation of control-surface characteristics.- With the pressure 
distributions known, expressions for the control—surface characteristics 
may be obtained by following the procedure of reference 3. For the sake 
of brevity, the derivation of only one of these characteristics, 0^- for 

outboard flaps, is given. 

Over the two—dimensional part of a flap the lifting—pressure coeffi- 
cient is given by 

and 

Cp = 2b\C1 - C20 + 1 C30
2J + 2C35

3 

^B = 2^ - C20 + 1 c30
2) + 6c35

2 

At 5=0, 

ÖCp 

ÖS = 2(C1 " C20  + I C30
2) 
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Over the two-dimensional part of one flap, 

^)  --<«,-c^Jo^)^ C|. C 
2   cf 

3 f ß 

= -(Cl - C20 + I C3JZ)2) 
Vf2 l«. cf3> 

2    3 ß 

Over the inboard corner of the flap, the average lifting-pressure coef- 
ficient is given by 

^av 2 

ni 
1 + £ siri^v) dv 

. -il 

v + 2 v sin-1v + i\|i - v2 

(--I) 

cp      = Cp    (1 -± 
■%v        -H» \        it 

Then, because the flow is conical, the center of pressure  in this region 
is at    — c~    and 

Hn 

ÖS 5=0 
-2lC1-O20 + 2c3^Wl-£   |Cf_l_ 3 n M2\   L       l\ 2 _    cf 

3    f 2ß 

= -(c1,c20 + ic30^(1_^ l\ 2_£f_ 
3ß 
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Over the outboard corner of the flap, the average presaure is one-half 
the two-dimensional value. Then, because the flow in this region is also 
conical, 

= -(ci - °a(* + £ C3S»2) 
0^3 

3ß 

Over the entire flap, 

il)     -i   -oi + 2c^ fbfCf2    * Cf3 + 
2Cf3    2Cf3 + 

Cf3N 

2    3  ß   3*ß 
= -(ci - c20 + I c30

2) 

Dividing by bfcf /2 gives the coefficient 

Ch5 = "(Ci - C20 + 1 C30
2) (l-2I + 2 

cf 
3nß bf 

Since 

cf _ cf c b _ cf / 
bf  c b bf  Abf/b 

s-^-^^^f-^^) 
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0 or.   since    Cn   = —, 
1      ß 

0+3£302W1_    2    *+2°f/° 
Cl    ^ Cl  / V   3ßA  it  bf/b 

DISCUSSION AND CONCLUDING REMARKS 

The final equations, which were derived in a fashion similar to 
that of the preceding example, are presented in tables I and II. 
Included in these tables is the range of applicability for each equa- 
tion; the limits were determined by the method described in appendix C 
of reference 1*. Note that the original equations for Cv,. have been 

o 
extended to include a wider range of ratios of flap span to wing span. 
These extensions were derived in a manner similar to that used in appendix D 
of reference k.    As an illustration of the application of the equations, 
control-surface characteristics calculated for two particular configura- 
tions are shown in figure 3. 

An error has been found recently in the value of Co as originally 

given by Busemann.  (See references 8 and 9-) The value of Co used 

in the present paper is that given in references 8 and 9. Values of C-,, 

C2, and C^ are given in table III. 

Each equation ('except those equations for C^ ^ contains the 

factor h-—-0 + ___0 V which can be regarded as a reduction 

factor representing the effect of the finite thickness. When the trailing- 
edge angle 0 is zero, this factor is unity, and the equations become 
those given by the linearized theory. When 0 is greater than zero, the 
factor is less than unity, which shows that the effect of the finite 
thickness is to reduce the absolute magnitude of all the coefficients 
(except CmCLy Curves of this reduction factor plotted against trailing- 

edge angle for various Mach numbers are given in figure k.    The stopping 
point of the curve for M = 1.3 was obtained by comparison of this curve 
with calculations for a double-wedge airfoil with flap made by the exact 
method of reference 10, the curve given in figure k being stopped when a 
10-percent difference between the two curves was reached.  For the other 
values of Mach number noted in figure k,  the curves given practically 
coincided with the exact curves for the entire plotted range of trailing- 
edge angle. 
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The recommended range of application (alao obtained by comparison 
with calculations obtained by use of the method of reference 10) is given 
in figure 5. The line of possible flow separation at 0 = 30° is quite 
arbitrary and is intended to serve as a warning against injudicious use 
of the equations rather than as a definite boundary. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va., May 13, I9U8 
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TABI* I 

OOTBOARD FLAPS 

Quantity Equation 
number Equation 

Range 

(bf/b) 
min (VL 

^--i(i-ci*+icir)[*n-km PA c 

c»6 P\        C1
Y'      ^Ci^yj^b        Vb/Jc        ßAlo   J        6ß2A2Vo 

2_ Of 

PA 0 

"»CL '"OL ' 

_ ff _ _i_ /, _ 2 ff\ 
cf/c 

~ c        6PA \ c  / bf/b 

=       1   cf/c 

PA bf/b 

PA 0 

<V ^8--f(-|^|^2)(- g    » + g cf/c 

3PA     *      bf/b 
SL_£ 
PA o PA 0 

0hR 

^-K-g'-fS*8) g   ir + 2 cf/c 

3PA     *     bf/b 

.(^gp^-ff pV(i-^ 

bf of 
3«PAri-i- 

b   c (?) 

1   _   _1 
2 b  coa 
it   bf/b cf/c 

.»(>-»" 

PA c 

"When   — = 1, (—)        = PA. 
* Kc  'max 

Von ü£.i, (!*)     -M. 
b \t /»,   g 
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TABLE H 

IHBOAED FLAPS 

Quantity Equation 
number 

Hange 

(^L 

% 6 CL2fi-220 + i23yA2^ff 
•^      ß  \       C/      l|0f/     I    c 

a 
0 1 _i_f£ 

ßA c 

C*6 7 vtR'*iä')®'? 
a 

0 1 _i_f£ 
ßA 0 

CD
CL 

8 ^ = -!(-?) 
a 

0 1 _£_££ 
~ ßA c 

C*6 9 ^-!(-c^l^)(-3^) ßA c 
1 _i_!£ 

ßA c 

ch8 10 

s-sf-l^!^) , ßAbf /b 
ain. 

2cf/c 

a 

0 
ßA 0 

cf/c 3ßAtf/t 

3ßA -£ -£         \ (?)2   _ 

<Wn   ^£=0,    (CJ)       -W 
1) \c  / 2 
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TABLE III 

VALUES OF Clt    C2, AND Cg 

M Cl c2 C3 

1.1 l*.36i* 30.32 867. 

1.2 3.015 8.307 53.8 

i-l 2.1*08 lt.300 11*.l* 

1.1* 2.01*1 2.919 5.80 

1.5 1.789 2.288 3.06 

1.6 1.601 1.950 1.97 

2.0 1.155 1.1*67 .927 

3.0 .7071" 1.269 1.13 

1*.0 .5161t 1.232 1.51 
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V 

*^ z 
* b . 

(a) Outboard flaps. 

< 

' 

^  

L     4- _J 
r~ z ~~^ 
- b   «. 

(b) Inboard flaps. 

Section optional 
\ 

(c) Section through flap. 

Figure 1.-   Control-surface configurations investigated. 
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Figure 4.-   Thickness reduction factor. 
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